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Abstract-A method<onvexity analysis-is presented for optimizing the design ofindirect measurements 
involving ill-posed inverse heat conduction problems. Convexity analysis yields a concise, quantitative and 
physically meaningful assessment of any proposed measurement design. One is thus able to make rational 
design decisions. Typical questions addressed by convexity analysis in inverse heat conduction problems 
are: What is the best deployment of a given number of measurements? How does the resolution capability 
deteriorate as the design is altered from the optimum? What is the utility of the marginal measurement- 
by how much will the resolution improve if an additional measurement is employed? Quantitative answers 
to these and other design questions are obtained by implementation of an efficient computerizable min- 
max algorithm. Design optimization by no means replaces the need for interpretational sophistication, but 

rather ameliorates the analysis of ill-posed inverse problems. 

1. INTRODUCTION 

INDlREcT measurement of surface temperature or sur- 
face heat flux is common in many heat transfer studies. 
Surface conditions are typically calculated from tran- 
sient temperature measurements in an interior point 
of a body in order to avoid a possible influence of the 
measuring device on the surface properties. Indirect 
measurements of surface temperature are encoun- 
tered, for instance, in calorimetry devices, in special 
flow problems where direct surface temperature 
measurement is not feasible, and in aerodynamic heat- 

ing measurements where temperature instrumentation 
is buried within an external skin. 

The problem of interpreting data obtained at an 
interior point in a solid, in order to determine a tran- 

sient surface temperature or surface heat flux, belongs 
to a special class of problems known as inverse heat 
conduction problems. In a general sense the inverse 
problems are associated with the determination of the 
sources of a temperature or heat-flux field from values 
of the field at certain points [l]. Inverse problems 
are distinct from direct heat conduction problems. In 
direct problems, the heat sources are known as well 
as either the temperature or heat flux on the surface, 

and a solution is sought for the temperature field 
inside the body. 

In its general form an inverse heat conduction prob- 
lem is likely to be ill-posed. That is, it may have 
infinitely many distinct solutions. The prediction 
of surface conditions from internal temperature 
measurements is, therefore, mathematically unstable. 
Nevertheless, several mathematical schemes have 
been reported [l-8] which exploit an approximation 
to the surface conditions, in order to arrive at an 

approximate ‘reasonable’ prediction of the surface 
temperature. On the other hand, an alternative and 
complementary possibility has been largely over- 
looked. Namely, the possibility of optimizing the 
design of the measurement system itself, in order to 
minimize the range of possible solutions and thus 
reduce the instabilities inherent in the inverse heat 
conduction calculations. The optimization of design 
parameters, such as the number and physical location 
of the measurement points, has not been sys- 
tematically studied. 

The objective of this paper is to present a math- 
ematical approach for optimizing the design of an 

indirect measurement of temperature and heat flux. 
Both steady-state and transient systems are studied. 
It utilizes the technique of convexity analysis 
developed by one of the authors [9], to provide 
concise, quantitative and physically meaningful 

answers to practical measurement-design questions. 
For example, the tools of convexity analysis will be 
used to evaluate the capability of a given deployment 
of N thermocouples to resolve the total power of an 
unknown distributed heat source, to establish the best 
deployment of the thermocouples and to determine 
the utility of the marginal (Nth) measurement. Con- 
vexity analysis is a method for optimization of the 

measurement-design, and does not replace existing 
techniques for data interpretation. However, by 
explicitly optimizing the design with respect to the 
ambiguity inherent in an ill-posed inverse problem, 
the difficulty and uncertainty associated with data 
interpretation can be reduced. 

Section 2 presents the results of convexity analysis 
for three simple examples, without discussing how 
these results are achieved. The aim of Section 2 is to 

1673 



1674 Y. BEN-HAM and E. ELIAS 

NOMENCLATURE 

inverse of the Biot number 
complete response set to arbitrary 
distribution in X of u watts, equation (9) 
line of dtstinguishability 
point source response function 
point source response set 
heat transfer coefficient 
thermal conductivity 
length 
linear power density 
heat flux 
unitless radial coordinate 
characteristic heat flux 
variable heat flux 
temperature 
time 

u power source intensity, end-point 
temperature 

V power source intensity, end-point 
temperature 

X spatial interval 
X axial coordinate 
Z relative power resolution of a measuring 

system. 

Greek symbols 

; 

thermal diffusivity 
coefficient, equation (29) 

6 (x) Dirac delta function 

i unitless axial coordinate 
e dimensionless temperature 
Z dimensionless time, Fourier number. 

show the reader what convexity analysis can achieve, 
before subjecting him to a discussion of how to do 
convexity anaiysis. Section 3 contains a succinct expla- 
nation of the methodology of convexity analysis. In 
Section 4 is an analysis of a transient heat conduction 
problem. 

2. PRELIMINARY EXAMPLES 

Inverse heat conduction problems may be encoun- 
tered in transient as well as in steady-state systems. 
An ill-posed inverse problem arises when the infor- 
mation regarding the temperature field is incomplete. 
For instance, the determination of the total steady- 
state power generated inhomogeneously in a body is 
considered a well-posed direct heat conduction prob- 
lem if the temperature field and its spatial derivatives 
in the body are known. However if, due to practical 
limitations, the temperature field is known only at a 
finite number of points in the body, the problem dis- 
plays the characteristic features of an ill-posed inverse 
problem. In the following, a few examples will be 
discussed to demonstrate the concepts of convexity 
analysis for the optimization of measurement-design 
for steady-state inverse heat conduction problems. 

The resolution capability of a given deployment of 
N temperature measurements is expressed by the rela- 
tive power resolution, z. The relative power resolution 
of a given measuring system is defined as follows : Any 
spatial distribution of total power u may be dis- 
tinguished from any spatial power distribution of total 
power u if and only if 

v > ZU. 

For example, if z = 1.2 for a given deployment of 
N temperature measurements, then any spatial dis- 
tribution of u watts can be distinguished, on the basis 
of the N measurements, from any spatial distribution 

of v (> U) watts if and only if v > 1.224. The technique 
of convexity analysis enables precise and efficient 
evaluation of z. Clearly z is always greater than or 
equal to unity. The closer z is to 1, the better is the 
power-resolution capability. It is important to under- 
stand that the relative power resolution exceeds unity 
due to the ill-posed nature of the inverse problem, and 
not due to any statistical uncertainty of the measure- 
ments. That is, the relative power resolution exceeds 
unity because different spatial distributions of the 
power density, and hence different values of the total 
power, are consistent with a given finite set of tem- 
perature measurements. Let us now consider some 
simple examples. 

Example 1. Linear heat conduction 
In this example we consider one-dimensional flow 

of heat in a solid bounded by a pair of planes at x = 0 
and L. Let q(x) be a steady-state power density in the 
interval X = [0, L]. We shall suppose that q(x) may 
assume any arbitrary shape on X. We are going to 
make N temperature measurements in the interval X, 
and try to deduce the total power. The boundary 
conditions are that the heat flux at x = 0 and L are 
known functions of the temperature 

q”(0) = h[T(O}- T,] (1) 

q“(L) = -h[T(L)- T,] (2) 

where TO and h are known constants. 
Even though we are allowing q(x) to assume any 

arbitrary shape, it is necessary only to find the tem- 
perature profile in response to a single point source 
of heat of unit intensity, in order to determine the 
relative power resolution. It is unnecessary to solve the 
heat conduction equations for any more complicated 
power distribution. (The reason for this will become 
clear in Section 3.) In other words, in order to deter- 
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mine the relative power resolution for a given deploy- 
ment of N temperature measurements, it is sufficient 
to find a Green’s function for the Laplacian operator. 
Thus we must solve 

where k is the thermal conducti~ty and 6(x) is the 
Dirac 6 function. In addition, because the system is 
at equilibrium, the heat transfer at the ends of the 
solid must equal the rate of heat production. Conse- 
quently we have the additional condition 

qf’(0)+q”(L) = 1. 

We shall employ the following unitless quantities : 

(=x/L and a= k/hL 

where we recognize that a is the inverse of the Biot 
number. The solution of equation (3) is 

(4) 

At a given location c the temperature can vary accord- 
ing to the source location, x’]L. Considering for 
instance the first part of equation (4), a minimum 
temperature is obtained at 5 when x’/L = 1 and a 
maximum temperature is obtained for x‘/L = c. Simi- 
larly, in the second part of equation (4), a maximum 
temperature is obtained for d/L = < and a minimum 
value is obtained for .x’/L = 0. Since the temperature 
depends linearly on the source power, the relative 
power resolution, z, is the ratio between the maximum 
and minimum temperature, i.e. 

We wish to select the best possible value for the (nor- 
malized) position of the measurement, 5. That is, we 
wish to select the value of [ which minimizes the 
relative power resoIution, z(i). In Fig. 1 we show z(c) 
vs [ for various values of a. For example, if a = 1 and 
[ = 0.2, then the relative power resolution is 1.8. This 
means that a single measurement at position 0.2 is 
able to distinguish any spatial distribution in X of u 
watts from any spatial distribution of more than 1.8~ 
watts. Furthermore, for any power between u and 
1.8~ watts, there are some spatial distributions at that 
power whose temperature at point c = 0.2 is the same 
as the temperature due to some spatial distribution of 
u watts. 

From equations (5) we see that the best position for 
a single measurement (i.e. minimum z) is at [ = 0.5. 
In Fig. 2 we show ~(0.5) vs k/hL. This shows that as 
the heat transfer coefficient at the ends of the line 
source. becomes small as compared to the heat con- 
duction in the source, the relative power resolution 
improves. This is reasonable, since k >> hL means that 
the temperature profile along the rod is insensitive to 
the power dist~bution. 

To summarize the one-measurement resolution 
capability, we note that equations (5) indicate the best 
measurement position, assess the resolution at this 
optimum point, and give a rigorous quantitative 
evaluation of the reduction in resolution capability 
as the measurement is removed from the optimum 
location. 

The relative power resolution of a single measure- 
ment is not very good unless the Biot number is very 
small. The method of convexity analysis enables ready 
evaluation of the relative power resolution for mul- 
tiple measurements. Consider a symmetric two- 
measurement arrangement 

0 < i, < l/2 and r2 = I-4,. 

In Fig. 3 we show the relative power resolution vs 5, 
for k/hL = 1. We note that when the detectors are 
positioned at the ends of the source ([, = 0, c2 = l), 
the relative resolution is unity. This is in fact an ana- 
lytically precise result for any value of k/hL. It means 

Measuremenr posirion c 

FIG. 1. Relative power resolution vs the position of a single 
measurement (Example 1). 

Inverse Hot number. khE 

FIG. 2. Relative power resolution at the optimum measure- 
ment position vs the inverse of the Biot number (Example I). 
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FIG. 3. Relative power resolution vs the measurement posi- 
tion for a pair of symmetrical measurements (Example 1). 

that by measuring the end-point temperatures, any 
spatial distribution of u watts can be distinguished 
from any spatial distribution of ti > u watts. The total 
power is thus completely resolvable. Furthermore, the 
results shown in Fig. 3 allow precise quantitative 
evaluation of the degradation of the resolution capa- 
bility as the measurements are withdrawn from the 
end-points. For example, if j, = 0.1 and iz = 0.9, then 
the relative power resolution is 1.1. This indicates that 
any spatial distribution of u watts can be distinguished 
from any spatial distribution of L' watts if and only 
if u > 1.1 zt. Let us now proceed to a slightly more 
complicated situation. 

E.umple 2. Line source in an in$nite medium 
Consider an arbitrary steady-state distribution of 

power along the x,-axis in the interval X = [-L, L] 
of an infinite medium and let the heat be conducted 
isotropically in three dimensions. For this formulation 
the Green’s function is particularly easy to find. We 
note that the temperature field in this exampie is 
entirely different from that in example 1, even though 
both cases deal with one-dimensional distribution of 
the heat source. 

Let us first consider a single measurement at a point 
in three-dimensional space, x = (x,, x2, x3). Since the 
heat source is distributed only on the x,-axis, the 
problem has cylindrical symmetry. Define 

[ = x,/L and r2. = fx:+.x:]/L2. 

The relative power resolution for this single measure- 
ment is 

The aim of our analysis, as in the previous example, 
is to choose the measurement position, [. In Fig. 4 we 
show the relative power resolution vs [ for various 
radial positions r. Interestingly, z has a local optimum 
at 1 = 0 (the~ocouple located above the centre of 
the line source). It is significant that, for fixed I, the 
detector must be moved to a point far beyond the end 
of the heat source before z regains the value which 
it has over the centre of the source. For example, 

I I I 
0 ‘ * 3 . 

,~ea.~~irf,f~lf~~~l posilior1 , i 

4. Relative power resolution vs the measurement 
position of a single measurement (Example 2). 

z([ = 0,r = 1) = 1.4, while z([ = 5, r = I) = 1.5. In 
practice there are likely to be limits on how far the 
measurement can be removed from the heat source. 
If the relative power resolution obtainable in practice 
with a single measurement is unsatisfactory, we 
should consider two or more measurements. Let us 
first consider two symmetrical measurements. Thus 

i, = -i2 and r, = r2. 

In Fig. 5 we show the relative power resoIution for 
two symmetrical measurements vs the axial position 
above the heat source. We note that the use of two 
measurements enables much closer radial positioning 
of the measurements. Also we see a surprising local 
optimum in the relative power resolution at about 
< = 0.6. The value of this local optimum is 

z[[, = --lz = 0.63, yi = 0.21 = 1.95 

z[[, = -iz = 0.70. r, = OS] = 1.18. 

In the latter case, e.g. any spatial distribution of u 
watts is distinguishable from any spatial distribution 
of v > u watts if and only if v > 1.18~. 

We can also consider three or more measurements, 
and we can obtain a quantitative assessment of the 
improvement resulting from these additional 
measurements. For two measurements at ri = 0.2, z 
has a local maximum (poor resolution) near [, = I. 
What happens if we add more measurements? Sample 
results are 

one measurement : 
z([, = l,v = 0.2) = 10.05 

FIG. 5. Relative power resolution vs the measurement 
position for two symmetrical measurements (Example 2). 
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two measurements : 
z([, = -iz = l,r, = 0.2) = 2.80 

three measurements : 
z(<, = -i2 = 1,c3 = o,r, = 0.2) = 1.53 

four measurements : 
z([, = -c2 = 1,c3 = --14 = 0.3,ri = 0.2) = 1.24. 

These results are very incomplete, and we should 
really seek the optimum deployment of two, three 
and four measurements, rather than just this arbitrary 
selection of thermocouple locations. However, we see 
a pattern which is quite common in the analysis of 
spatially random phenomena : the utility of the mar- 
ginal detector decreases rapidly as the number of 
measurements rises. Two measurements are much 
better than one, and three are considerably better 
than two, but four measurements do not provide a 
dramatic improvement on three. Conversely, a large 
number of measurements is likely to be required to 
get I really close to unity. 

We must stress again that in this example we have 
made no systematic attempt to find the true optimum 
deployment of the detectors. However, the technique 
of convexity analysis enables overall quantitative opti- 
mization, and examination of Fig. 5 shows that proper 
detector deployment can be quite beneficial. 

In the previous examples we have allowed u watts 
of power to assume any arbitrary distribution in a 
specified segment of one coordinate in space. The 
methodology of convexity analysis is fully capable of 
handling situations where the heat source is dis- 
tributed in a disc, or sphere, or in any defined region 
no matter how irregular. In fact once the Green’s 
function for the Laplacian operator has been found, 
no particular di~~ulty arises in conside~~g any given 
spatial domain for the heat source. 

Convexity analysis has an additional dimension of 
generality. Rather than allowing the power to assume 
any conceivable distribution in a specified spatial 
domain X, we may wish to consider constraints on 
the range of variability of the spatial distribution of 
the power. For instance, the power density may be 
unifo~Iy bounded throughout the domain X, or the 
power density may increase or decrease monotonically 
in certain specified directions. 

For instance, let us consider again example 2, where 
the domain of the heat source is an interval on the x,- 
axis, X = [-L, L], and the heat is conducted iso- 
tropically in three dimensions. Let II watts of power 
be distributed in X according to 

where M is a fixed positive integer, c is a positive 
constant (not necessarily small), and the parameters 
b, vary independently on the unit interval 

O<b,< 1, m= 1,2 ,..., M. 

XNT 30:8-H 

Note that the total power of the distribution q(x) is u 
watts, regardless of the value of the vector b. Conse- 
quently, different values of the vector b = (6 i,. . . , b,) 
cause the same total power to generate different tem- 
perature fields. Conversely, different power dis- 
tributions of different total power (different values of 
U) can generate identical temperatures at a fixed set of 
measurement positions. 

As in the previous examples, one is able to evaluate 
the relative power resolution for any deployment of 
N measurements. It is easily shown that a single 
measurement performed at < = 0 and at any value of 
r yields a relative power resolution of unity. Fur- 
thermore, a complete analysis will reveal the degree 
of degradation of the resolution capabiiity as the 
detector is moved off centre ; the improvement as more 
measurements are made ; and so on. 

3. A BRIEF EXPLANATION OF 

CONVEXITY ANALYSIS 

The results which we have presented in the last 
section and which will be presented in a more detailed 
example in Section 4, are based on a rigorous math- 
ematical analysis. The numerical calculations employ 
a simple and efficient min-max algorithm which 
enables the analysis of an unlimited variety of 
measurement designs. Very large measurement mul- 
tiplicity is readily handled, as is a wide range of varia- 
bility of source-term geometry. In order to give these 
claims-of mathematical rigour and computational 
e~~iency-some plausibility, we shall present a skel- 
eton outline of the methodology of convexity analysis. 
A completely general and formal presentation would 
be confusing for the uninitiated reader, so we shah 
formulate the presentation in the context of a specific 
class of problems. (For greater detail see refs. [9, lo]). 
We shall consider the design of a measurement whose 
aim is to determine the total power of an unknown 
spatially dist~buted heat source, based on a finite 
number of temperature measurements. 

We must begin with some definitions. The spatial 
domain of the heat source is represented by the set X. 
That is, any point at which heat may be generated is 
represented by an element of the set X. Similarly, the 
spatial domain of the measurements is represented by 
the set x’ : any point at which a temperature measure- 
ment may be performed is an element of X’. The sets 
X and X’ may or may not overlap. Let us imagine a 
single heat source of unit intensity concentrated at a 
point x in X. The resulting temperature at a point x’ 
in X’ is given by the point source res~o~$e ,fu~etio~, 
f(x, x’). The point source response function is subject 
to the boundary conditions of the specific problem in 
question, and is very closely related to the Green’s 
function for the Laplacian operator. If we are con- 
sidering N temperature measurements at points 

I x ,, . . . , XL, then we let f be a sector point source 
response function, and we usually only denote the 
position of the point source 
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f(x) = [f(% 4 1, ‘. .? l-(x, xX)1. (7) 

Convexity analysis is based on the analysis of sets of 
vectors. The most fundamental set is the point source 
response set, F. This is the set of all vector values 
which ,f(x) may assume. Formally 

F = {f(x), for all x in X}. (8) 

F is a set of N-vectors: all those collections of N 
temperature measurements (N-vector responses) for 
any positioning in X of a single point source of heat 
of unit power. 

The next set encountered in convexity analysis is 
the complete response set, C. This is the set of all N- 
vector responses to any arbitrary distribution in X of 
one unit of power. The complete response set is a 
set of vectors, like the point source response set. C 
contains all collections of N temperature measure- 
ments which may be obtained in response to any arbi- 
trary spatial distribution within X of one unit of 
power. (Let us henceforth adopt the watt as our unit 
of power.) 

Because of the linear superposition of the responses 
to different heat sources, the set of all N-vector 
responses to u watts-the complete response set for u 
watts, C(u)-is obtained by simply multiplying each 
element of C by the scalar u. Thus C(u), the set of all 
vector responses to an arbitrary distribution in X of 
u watts, is 

C(u) = UC. (9) 

Before stating the relationship between F and C, 

we make a short digression to define the concept of 
convexity. A set is convex if, given any two points in 
the set, the straight line joining them is entirely in the 
set. For example, elliptical and rectangular regions 
(boundary and interior) are convex sets of points in the 
plane, while crescents, L-shapes and U-shapes are not 
convex. For any set, A, the convex hull of A is the 
smallest convex set containing A. The convex hull of 
A is denoted ch (A). For example the convex hull of 
a v-shaped curve is the triangular region (boundary 
and interior) obtained by closing the v at the top. 

A very important result, known as the convexity 
theorem, states that the complete response set C is 
precisely the convex hull of the point source response 
set F. This theorem is the cornerstone of convexity 
analysis. 

A necessary and sufficient condition for any spatial 
distribution in X of u watts to be distinguishable (by 
measurement at N specified positions) from any spa- 
tial distribution of L: watts is that the complete 
response sets, C(u) and C(v), be disjoint 

uCnvC= 0. (10) 

The optimum design is the one for which u and v 
watts are distinguishable for the greatest range of 
values of u and v. We shall now discuss a very import- 
ant property of the complete response sets, which 
assists in determining the range of distinguishable 

values of u and v. Suppose u and v watts are always 
distinguishable, where u < v. Then u and c” watts are 
also always distinguishable, for all v’ > c. This results 
from the convexity of the complete response sets, and 
is not necessarily true for arbitrary (non-convex) sets. 
This property leads us to define, as before, the relative 
power resolution as the smallest number, Z, such that 
u and v watts are always distinguishable if and only if 

2’ > ZU (11) 

Furthermore, a geometrical study of the disjointness 
of convex sets leads to the following minmax algo- 
rithm for evaluating the relative power resolution, z 

z = min max -~ 
weW 1.4tP (w, ,q) (12) 

where (w, f) is the inner product of the N-tuple 
w = (w,, , wN) with the N-vector point source 
response function. That is 

(w, f> = f WLf’k 0 (13) 

W is the set of all real N-tuples for which (w, ,f) is 
nonzero and of the same sign for all .f in F. 

The implementation of this algorithm is by a two- 

stage iteration. First choose an N-tuple PV. For exam- 
ple, start with w, = . . = wN = 1. Then find the values 
f’ and f” in F for which (w, f) is respectively a 
minimum and a maximum. If (w, ,f’) and (w, f “) 
are of the same sign, then the N-tuple u’ which was 
chosen actually belongs to W. Now alter the N-tuple u’ 
and again search on Ffor the minimum and maximum 
values of (w, f). This double iteration (on W and on 
F) is continued until a minimum is obtained for the 
maximum ratio (w, f “)/(w, f’). This ‘minimum of 
the maximum’ is precisely the relative power resol- 
ution. We should stress that only the point source 
response function is needed in order to evaluate the 
relative power resolution for arbitrary spatial dis- 
tributions of the heat source. 

Up to now we have assumed that u watts of thermal 
power may be distributed in the region X according 
to any conceivable power density function. We have 
imposed no constraints on the set of possible power 
density functions (other than the implicit assumption 
that the power density is integrable in X). In many 
applications such variability of the distribution of 
power density is realistic. In such cases, the technique 
for evaluating the relative power resolution which 
we have presented is suitable. In other applications, 
however, the spatial distribution of the power density 
may be constrained in some way. For example, there 
may be an upper bound on the value which the local 
power density may attain. One would nevertheless 
like to evaluate the relative power resolution for the 
specific set of realizable power density functions. The 
method by which convexity analysis achieves this is 
explained through an example in Section 4. 
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It, CQNVEXITY ANALYStSOF A TRANSIENT 

INVERSE PROI?LLEM 

In a transient measurement one is ~~~c~~~y inter- 
ested in cafcutating the transient surface temperature 
based on temperature measurements at one or more 
points in the body. We Shall consider a ore-dimen- 
sional case consisting of a rxx3 of fength 2L whick is 
initially at temperature zero. At time t > c9 a varying 
heat flux, r(t), is applied at its ends. It is required to 
determine the temperature at the ends of the rod based 
on tem~rat~re measurements in the rod. For con- 
stant thermal propertieS, the heat conduction equa- 
tion and boundary conditions are 

where .X is the position on the rod, 1x1 < L, a’ the time, 
T(x, f) the tern~~~ature at X, t, and E* = I&C,, the 
thermal diff~j~~t~. 

An inverse problem arises when the temperature 
7(x, l) at one or more points in the body is Specified 
rather than the heat flux r(6). If r(t) were completely 
known, then equations &Q-(16) could be so&cd and 
the temperature at. x = L would be known. However, 
if r(t) is not known, then a finite set of measurements 
in 1.~1 < L do not necessarily determine the tem- 
perature at the end of the rod, x = L. Consequently, 
dete~j~at~on of the temperature at x = I, by mea- 
suring the temperature in 1x1 < t, is plagued by an 
unavoidable uncertainty. The aim of this section is t0 
Show how convexity analysis provides a quan~~~~e 
means for evaluating this uncert~~nty~ as a function of 
the number and locations of the measurement points. 
This evaluation of the uncertainty serves as a basis for 
rational decisions and system optimization. It will be 
shown, f0r instance, that two measu~me~~S provide 
much better resolution of the temperature at the edge 
than da either of the single measurements alone. To 
arrive at a quantit~~t~ve measure of the ability to deter- 
mine the edge temperature (at x = L] we wit1 first 
solve the direct problem. Using Duhamel’s theorem 
[ll] it can be shcrwn that equations (14)-(16) arc 
solved by 

where z is the dimensionless time or Fourier number, 
~(E/L)~, B the dimensionless i~m~rature~ 7;EI(LrJ, 5 
the dimensionlesS length, xii;, and r, a characteristic 
heat Anx at the edge. An important property displayed 

by equation (17) is that the temperature, 8, is linear 
and homageneous in the heat flux r. 

Any given heat flux function, r(s) for 0 $ s < t, 
generates a temperature pr0ELe at time t according to 
equation (17). The heat flux fimcrian r(s) is unknown. 
In fact, P may be any function from among a Set of 
functions. Let R represent the set of all physically 
allowable J’ functions. Then, different P funCtiOnS in R 
wifl genemte different temperatuse profiles. For any 
function Y in R, Iet S(<, T ; r) be the corresponding 
solution. Further, define z( to be the dimensionless 
time for which we wish to estimate the temperature at 
5 = f, and fet R(ir) represent the Iargest Subset of R 
for which 8( 1, rf; r) = u. That is 

R(u)== {r:fI(l,~;r)=r~, forallroR~, (18) 

in many situations we will be able to represent R(rr) 
as the convex huh of a set G(U) of simpler functions 

R(n) = ch [G(u)& (19) 

We shall perform t~l~~rature measurements at M 
Space-time points which are denoted 

P = (Pr,P*,.‘*> P,~) where Pi = (x,, (m,)‘ 

The M-vector measurement in response to a given 
function r is 

e(r) = [B(P, ; 4, . . . , m?w ; 41. 

The complete response Set for 0 (1, bc) = zc is tile set 

of iill meaSurements obtainable at the M space-time 
points p, for which the end-point temperature is E(. 
Specifically, this complete response set is 

O&f = (8 (r), for all I E R (@)]. (2Q) 

Let us d&e the fundamental response set for end- 
point temperature @( 1) t,; r) = 24 as 

F(t4) = f@(r), for all EF(@])). @If 

Because R(U) is the convex huh of G(U), and 
because U(r) is linear and homogeneous in r (see 

equation ( 17)), we conclude that 

O(u) = ch [F(U)]” (23 

This relationship will enable a great simplification in 
the evaluation of the resolution capability. 

The M measurements at space-time positions p are 
able to distinguish an end-point temperature of u from 
an end-point temperature of D if and only if the cor- 
responding complete response se& are disjoint 

O(U) II O(u) = @, (23) 

Because the complete response Sets are convex (and 
c0mpact----a necessary t~bn~~~~~~~~, a necessary and 
sufficient condition for this disjointness is that there 
be a hyperplane which Separates the two response sets 
in the ~“d~mens~onal response space. A hyperplane 
in the response space is the Set of all M-vectors B such 
that 
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,g, w,fI; = constant (24) 

where the w, are constant real numbers. Let us adopt 
the notation that (w, 0) represents the sum of the left- 
hand side of equation (24). 

From these considerations we see that equation (23) 
is true (and the end-point temperatures u and tl are 
distinguishable) if and only if there is a real M-tuple 
u’ = (w ,, . , wM) such that 

,m$<;x(wJ) < 8m&<w,0. (25) 

Relation (25) provides the basis for evaluating the 
relative temperature resolution for a given set of M 
space-time measurement positions. The numerical 
result of such an analysis is a ‘line of distin- 
guishability’, D(U). An end-point temperature L’ is dis- 
tinguishable from the end-point temperature u (for 
L’ > U) if and only if 

t’ > D(U). (26) 

Because O(u) is the convex hull of F(u), the extrema 
in relation (25) can be evaluated on F(u) rather than 
on O(U). This is a basic property of convex sets, and 
is of very great importance. Furthermore, a search on 
F(u) for an extremum can be expressed as a search 
on G(U). These conclusions may be represented as 
follows : 

extremrm (w, 0) = extmFm,rn (w, 0) 

= ext;:GT,m (w, e(g)>. 

(27a) 

(27b) 

It is instructive to compare relations (11) and (26). 
In Section 3 we considered arbitrary spatial dis- 
tributions (of the power density), while in the present 
section we have imposed constraints on the range of 
spatial variability (of the r-functions). In Section 3 we 
were able to express the resolution capability with a 
single number, the relative power resolution z, as in 
relation (1 I), while in the presence of constraints on 
spatial variability we find that the resolution capa- 
bility is expressed by a curve: the line of dis- 
tinguishability. Equivalently, we can say that con- 
straints on the range of spatial variability have caused 
the relative resolution to be a function of the measured 
parameter, u. Thus we could have written, instead of 
inequality (26) the following condition for dis- 
tinguishability : 

D > z(u)zf (28) 

where z(u) = D(u)/u. 

4.3. C0nue.u modelling 

In Section 4.1 we introduced the set R of all allowed 
r-functions which may occur in equation (16). The 
physical definition of the problem will suggest the 
general range of functions which make up the set R. 

Particular care and caution must be exercised in the 
precise choice of R. Two considerations are of pre- 
eminent importance in selecting R. On the one hand, 

the r-functions introduced must be physically reason- 
able and R must not exclude any class of physically 
reasonable functions. On the other hand, it is very 
desirable that the subsets R(u) be the convex hulls of 
fundamental sets G(U) of ‘simpler’ functions. (Recall 
that R(u) is the greatest subset of R for which the end- 
point temperature equals u.) The elements of G(u) are 
sufficiently simple if equation (17) can be evaluated 
for an arbitrary element of G(u) without too much 
difficulty. Since R(u) is the convex hull of G(U), it will 
not be necessary to evaluate 0 for any elements of R 

other than elements of G(u). (See equations (27).) The 
task of selecting the set R so that it is a sufficiently 
realistic model of the physical problem, and so that 
the subsets R(u) are convex, is referred to in general 
as ‘convex modelling’. 

Let us consider a specific case. Suppose that the 
physical definition of the problem suggests that R(u) 

is a convex set of functions r(t) which increase mono- 
tonically in time on the interval [0, rr] and which are 
bounded by r’ < r(t) < r”. Can we model this problem 
convexly? That is, can we find sets G(u) of simple 
fundamental functions such that R(u) = ch [G(u)] and 
such that R(u) is physically reasonable? 

To show how this may be done, consider the fun- 
damental functions 

g(t;s,fi) = r’+(r)‘-r’)/lU(t-s) (29) 

where U(t) is the unit step function: equal to 0 for 
t < 0, equal to 1 otherwise. Thus g(t ; s, /j’) is a step 
function which jumps from r’ to r’ + (r” - r’)p at t = s. 
We will always assume that 0 Q b < 1 and that 
0 < s $ rr. It is readily shown that all bounded, 
monotonically increasing functions can be expressed 
as averages of such step functions. 

Recall that an element r in R results in an end-point 
temperature O(l,r,;r). Let G(u) contain those step 
functions which produce an end-point temperature of 
u at rr. That is, G(u) is 

C(U) = {&r;s,B):Q(l,rr;g) = u}. (30) 

Since Q(l,r,-;r) is linear and homogeneous in r, it 
results that any convex combination of elements of 
G(u) also produces an end-point temperature equal 
to u. Thus ch [G(u)] is a rich collection of bounded 
monotonically increasing functions which result in u 
as an end-point temperature. It is probably reasonable 
to adopt ch [G(u)] as the set of all allowed heat transfer 
functions whose end-point temperature is u at zr. That 
is : 

R(u) = ch [G(u)]. (31) 

It remains only to characterize the sets G(U). From 
equation (17) one finds that g( r ; s, /?) belongs to G(u) 
ifs and /I satisfy a certain transcendental equation. It 
is not too difficult to evaluate the range of values (s, fi) 
for which g(t ; s, 8) belongs to G(U). The problem 
of convexly modelling the set R is now solved in a 
reasonably satisfactory manner. 
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4.4. Non-linear boundary conditions 
Before continuing with the analysis of this example, 

let us consider an important consequence of the con- 
cept of convex modelling. Cursory examination of 
equation (16) may leave the mistaken impression that 
the design optimization procedure can be applied only 
when the boundary conditions arc not functions of 
the temperature. To demonstrate that this is not so, 
let us suppose that equation (16) is replaced by 

= r[t, T(L, t)l. (16a) 

Since T itself is a function of time, the right-hand side 
of equation (16a) is no more than a function of time. 
More precisely, r(t, T) may represent a family of func- 
tions of time. The fact that we write r(t, T), rather than 
r(t), is just an expression of our limited knowledge 
about the form which any particular heat flux function 
may assume. In those situations for which the design 
optimization is difficult, this limitation of our knowiedge 
arises from the very great complexity of the phenom- 
enon under examination. However, in optimizing the 
design of the measurement, we need not be concerned 
with the form of arbitrary allowable heat flux func- 
tions. Rather, we need only know the range of varia- 
bility of the heat flux functions. R(u) represents the 
set of heat flux functions which, to the best of our 
understanding of the problem at hand, may occur. If 
the phenomenon being studied is complex, then the 
set R(u) is defined by making some generalizations 
about the phenomenon. That is, R(u) is to be defined 
by specifying the properties of its members, rather 
than by specifying its members explicitly. For 
example, we may be able to satisfy ourselves that it 
would not be inconsistent with our understanding to 
assume that the set R(U) contains certain mono- 
tonically increasing functions of time, as in the pre- 
vious subsection. In order to optimize the design of 
the measurement, we must be able to specify the sets 
R(u). Hopefully, we will be able to model them con- 
vexly. However, we have no need of knowing the 
temperature field in response to any particular 
elements of R(u) other than those elements of the 
fundamental set whose convex hull equals R(u). If we 
are able to specify the set R(u) as a set of functions of 
time only, then our optimization of the design 
becomes independent of the non-linearity implied in 
equation (16a). 

4.5. Results 
Results for a specific case of monotonically increas- 

ing r(t) in the range from 0 to 500 W m-’ are presented 
in Figs. 6-Y. Figure 6 shows the fractional temperature 
resolution for a single thermocouple located at relative 
distances of 25 and 10% from the end of the rod, as 
a function of the dimensionless temperature, 0, at the 
edge. The maximum heat flux (500 W m-‘) was 

chosen as a characteristic heat flux, r. in the definition 
of the dimensionless temperature. The resolution 
capability improves as the detection point comes 
closer to the edge (x/L increases). Obviously the res- 
olution capability is perfect (that is, D(U) = u) when 
the measurement point coincides with the edge of the 
rod. For a thermocouple at x = 0.95 and dimen- 
sionless temperature of B = 20, the fractional res- 
olution is 0.2. This means, for instance, that for an 
aluminium rod 10 cm long, a single thermocouple 
located at a distance of 5 mm from the edge can 
differentiate between end-point temperatures of 5 and 
6°C at the edge. The resolution capability improves 
as the edge temperature increases. For instance using 
the above example of an aluminium rod, the same 
thermocouple may be used to differentiate between 
10 and 1023°C. That is, the fractional resolution is 
0.08 at a dimensionless temperature of 0 = 40 for 
x/L = 0.95. 

Figure 7 shows the fractional resolution of the edge 
temperature at time rr, for a single measurement at 
position x = 0.95 and at time rr. Two values of the 
dimensionless temperatures at the edge were used : 20 
and 40. The resolution capability deteriorates as the 
measurement time increases. For a larger rr there 
exists a broader range of r functions in R(u). This 
increases the range of possible temperatures at the 

FIG. 6. Fractional temperature resolution, [D(u) - u]/u, for a 
single thermocouple as a function of temperature. 

FIG. 

X/L = 0.095 

OS . II 

i1immsionks.s time. dt,jL 

7. Fractional temperature resolution, [D(U) - u]/u, 
single thermocouple as a function of time. 

for a 
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thermocouple location and thus decreases the detec- 
tor’s resolution capability. 

The improvement in the resolution capability 
obtained by adding a second thermocouple is dem- 
onstrated in Figs. 8 and 9 for a dimensionless tem- 
perature of 40. Figure 8 shows the fractional tem- 
perature resolution for two cases. In the upper curve, 
one of the two thermocouples is located at x, = 0.95, 
and in the lower curve one thermocouple is at 
X, = 0.98. The position of the second thermocouple 
is shown on the abscissa. Adding another thermo- 
couple at x2 improves the resolution capability 
dramatically. Considering for instance the first curve 
of x, = 0.95, then adding a second measurement at 
x1 = 0.9 improves the fractional resolution from 0.08 
to 0.0013. This means that by using two thermo- 
couples at 0.95 and 0.9 one can differentiate be- 
tween a temperature of 10 and 10.013”C at the edge 
of the aluminium rod discussed above. (Recall that 
one measurement at x/L = 0.95 is able to distinguish 
no better than between 10 and 10.8”C.) The resolution 
improves if one of the thermocouples is placed closer 
to the edge. For instance, adding a second therrno- 
couple to a thermocouple at x, = 0.98 improves 
the fractional resolution from 0.02 to 0.0006. It is 
interesting to note that the exact location of the second 
thermocouple has only a small effect on the relative 
resolution of the system. 

The fractional resolution of two thermocouples at 

1 1 

1 T 

X’IL 
FIG. 8. Fractional temperature resolution vs measurement 

position for two thermocouples. 

Dimwsionkss Itmc, di ‘L I2 

FIG. 9. Fractional temperature resolution for two thermo- 
couples as a function of time. 

x = 0.95 and 0.9 is depicted in Fig. 9 as a function of 
the dimensionless measurement time. As discussed for 
a single thermocouple system, the resolution capa- 
bility deteriorates asymptotically with the dimen- 
sionless time. 

5. SUMMARY AND CONCLUSIONS 

Inverse heat conduction problems typically involve 
the inference of surface temperatures or surface heat 
fluxes from measurements at interior points. More 
generally, inverse problems involve the determination 
of heat or heat flux source terms, from a finite set 
of measurements. Such problems can be ‘ill-posed’ : 
having an infinite number of solutions. That is, the 
spatial distribution of the source is not necessarily 
uniquely determined by a finite set of measurements. 
In fact, the set of possible spatial distributions of the 
source may be infinite. This spatial uncertainty is a 
fundamental feature of an ill-posed inverse heat con- 
duction problem. 

The spatial uncertainty generates an ambiguity in 

the interpretation of an ill-posed inverse heat con- 
duction problem. While various data analysis tech- 
niques have been developed to reduce the ambiguity 
in the interpretation of ill-posed problems, our aim 
has been to present a different though complementary 
approach. We have discussed a method-convexity 
analysis-for optimizing the design of the measure- 
ment with respect to the spatial uncertainty which lies 
at the root of the interpretational ambiguity. Design 
optimization by no means replaces the need for inter- 
pretational sophistication, but rather ameliorates the 
analysis of ill-posed inverse problems. 

In this paper we have concentrated solely on the 
spatial uncertainty inherent in ill-posed inverse heat 
conduction problems. We recognize that another 
source of uncertainty-random processes effecting the 
measurements themselves-may also be important. 
Convexity analysis is capable of incorporating this 
‘statistical uncertainty’ in the overall design opti- 
mization; many design optimization problems (out- 
side the field of heat conduction) involving both 
spatial and statistical uncertainty have been solved. 

Convexity analysis is a very general mathematical 
tool for design optimization in a broad range of 
measurement applications. Exploitation of concepts 
from the theory of convex sets allows the rigorous 
treatment of the possibly infinite set of spatial dis- 
tributions of heat or heat flux source terms. Convexity 
analysis yields a concise, quantitative and physically 
meaningful assessment of any proposed measurement 
design. One is thus able to make rational design 
decisions. Typical questions addressed by convexity 
analysis in inverse heat conduction problems are: 
What is the best deployment of a given number of 
measurements? How does the resolution capability 
deteriorate as the design is altered from the optimum? 
What is the utility of the marginal measurement-by 
how much will the resolution improve if an additional 
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measurement is employed? Quantitative answers to 

these and other design questions are obtained by 

implementation of an efficient computerizable min- 
4. 

max algorithm. 
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MESURE INDIRECTE DE TEMPERATURE DE SURFACE ET DE FLUX THERMIQUE: 
OPTIMISATION BASEE SUR L’ANALYSE DE LA CONVEXITE 

Rbum~Une methode, analyse de la convexite, est present&e pour optimiser les mesures indircctes bastes 
sur le probltme inverse de la conduction thermique. L’analyse de convexite fournit une evaluation concise, 
quantitative dune mesure quelconque. On est ainsi capable de concevoir un montage rationnel. Les 
questions typiques posees par l’analyse de convexite dans les problemes inverses de conduction sont : Quel 
est le meilleur deploiement dun nombre donnt de mesures? Comment se dtrtriore la resolution quand on 
s’ecarte de l’optimum? Quelle est l’utilite de la mesure marginale et de combien s’ameliore la resolution si 
on ajoute une mesure? Des reponses quantitatives 21 cela et a d'autres questions sont obtenues par 

un algorithme min-max informatist. L’optimisation du montage ne supprime pas la sophistication de 
I’interpretation mais elle ameliore l’analyse des problemes inverses ma1 poses. 

INDIREKTE MESSUNG VON OBERFLACHENTEMPERATUR UND 
WARMESTROMDICHTE : OPTIMALE ANORDNUNG UNTER ANWENDUNG 

DER METHODE DER KONVEXITATSANALYSE 

Zusammenfaasung-Eine Methode+%e Konvexitltsanalyse-wird vorgestellt zur Optimierung der Anord- 
nung bei indirekten Messungen, die such ungiinstige inverse WIirmeleitprobleme beinhalten. Die Kon- 
vexitltsanalyse liefert eine kurze, quantitativ und physikalisch sinnvolle Einschltzung von beliebigen 
MeOanordnungen. Es ist damit miiglich, begrilndete Entscheidungen ilber eine Anordnung zu treffen. 
Typische Fragen, die durch die Konvexitatsanalyse bei inversen Wlrmeleitproblemen beantwortet werden 
kiinnen, sind : Was ist die beste Vorgehensweise bei einer gegebenen Anzahl von Messungen? Wie ver- 
schlechtert sich das Aufliisungsvermiigen, wenn die optimale Anordnung verlassen wird? Was niitzt eine 
Messung, die gerade eben noch miiglich ist, urn wieviel wird sich die Auflijsung verbessem, falls eine 
zusatzliche Messung durchgefiihrt wird? Quantitative Antworten auf diese und andere Gestaltungsfragen 
erhalt man aus der Anwendung eines wirkungsvollen, numerisch anwendbaren Minimum-Maximum 
Algorithmus. Anordnungsoptimierung ersetzt keinesfalls die Notwendigkeit der Interpretation, aber sie 

verbessert freilich die Analyse von ungiinstigen inversen Problemen. 

KOCBEHHbIE H3MEPEHHII TEMI-IEPATYPbI I-IOBEPXHOCTM I4 TETIJIOBOI-0 TIOTOKA: 
OIITMMAJIbHbIti PACgET HO METOAY BbIITYKJIOI-0 AHAJIM3A 

Armora4lla-Pacch4arpesaerca Meron sbmyxnoro ariantr3a nnn orrrrrh4rr3aumi rcocnemihrx ri3hte~nwR, B 

TOM 'iHCJtenpS4 pemeHHH HeKOP~KTHOllOCTaBJleHHbIX 06paTHbrX 3ana'l TellJIOllpOBOAHOCTH. BbIllyKJrbIii 

aHaJlH3 lT03BOJIneT Up&i COKpaUleXiHH KOJlHWCTBa H3MepeHHfi OUeHHTb @i3H'IeCKyIO CymHOCTb Qna 

nro6oii n~J3JIO~eHHOii TeXHHKH H3MetJeHHfi. 3TO LlaeT B03MOKSWCTb ITOJty'taTb palWOHaJTbHMe KOH- 

CTpyKTOpCKHe &%ZUteHWi. hdQ’KnOMy aHZlJIli3)’ aX(pec)‘tOTCn CJleiQ’lOUHe THllWIHbIe BOnpOCbI B o6parsbrx 
3alIaSaX TenJtOnpOBOLlHOCTH: KaKOBO OnTHMaJlbHO npHeMJ,eMOe WKL"O H3MepeHHii, HaCKO,tbKO yXyn- 

maeTCa pa3pemaromaa cnoco6HocTb npH OTKnOHeHHH PaC’ieTa OT OlTTHMaJIbHOTO,KaKan uenecoo6paa- 
HOCTb B paCI”H~HHH npenena rr3MepeHrtii-HacKonbKo ynywrsTcn pa3pemeHHe Bnaronapn 

LIOnOJIHHTeJTbHbIM U3MepeHUKM? KOJIHYeCTBeHHble OTBCTY Ha 3TH H ApyrHe BOnpOCbI nOJIy'ieHb1 Ha 

KohmbroTepe c noMombro mini-max anropriTMa. OnTHMHsamrn pac=reTa HH B Koefi h4epe He 3aMeHneT 
TO'iHOii ~HTepn~Ta~~~,HOCH~bHOy~y~maeTaHa~H3HeKO~~KTHOnOCTaB~eHHb~XO6paTHbIX3aAa~. 


